College of Medicine / Graduate Biomedical Science Programs / About the Master's Degree Program


       

Charles E. Schmidt College of Medicine
Florida Atlantic University
777 Glades Road
Boca Raton, FL 33431
561-297-4828
COMinfo@health.fau.edu

About the Master's Degree Program

Biomedical Science

labCharles E. Schmidt College of Medicine offers graduate education programs that provide students with the skills and knowledge that will enable them to engage the forefront of basic, applied, and translational research or to continue their studies toward professional degrees in the health sciences.

Students interested in pursuing advanced studies in biomedical science may obtain a Master's Degree in Biomedical Science, taking the thesis, or non-thesis option.

The thesis option is oriented towards those students interested in pursuing biomedical research careers in industry or academia and can provide a stepping stone to the Ph.D. degree. The non-thesis option is designed for students seeking in-depth exposure to biomedical science or to solidify their knowledge base in preparation for a broad range of career options, including further study in professional schools.

The degree requires 30 credits. Current courses that may be used toward this degree are listed below. Any course not included on this list must be approved by the college's graduate committee if it is to be used to satisfy degree requirements. Please see the Biomedical Master's Guide for detailed program requirements.

Course Descriptions: Biomedical Science & Electives

Graduate Courses

Integrated Morphology 1 (BMS 6102C) 4 credits 
Prerequisite: Permission of instructor 
This course involves the developmental, microscopic, and gross anatomical features of the organs located in the thorax and abdomen of the human. A laboratory includes a cadaveric dissection experience and examination of tissue samples using virtual microscopy. 

Integrated Morphology 2 (BMS 6104C) 4 credits 
Prerequisite: Permission of instructor 
This course involves the gross anatomical features of the structures of the back, limbs, head, and neck of the human. A laboratory includes a cadaveric dissection experience. 

Autonomic Function and Diseases (BMS 6523) 3 credits 
Prerequisite: Permission of instructor 
Course covers both the physiological and clinical study of the autonomic nervous system (ANS) emphasizing the neural circuitry aspects of systemic regulation. Topics are introduced in lectures and followed up by recent journal articles. 

Fundamentals of General Pathology (BMS 6601) 3 credits 
Covers the basic pathophysiology of mechanisms of disease in medicine and incorporates gross pathologic, microscopic and radiologic material to assist in understanding fundamental disease. 

Brain Diseases: Mechanism and Therapy (BMS 6736) 3 credits 
Prerequisite: Permission of instructor 
Discussion of the molecular and cellular basis of brain diseases and of the current status of therapeutic intervention for those diseases. 

Macromolecules and Human Disease (GMS 6301) 3 credits 
Prerequisite: BCH 3033 or PCB 4023 or equivalent 
Explores structure and function of biological macromolecules with emphasis on DNA, RNA and proteins. 

Molecular Basis of Disease and Therapy (GMS 6302) 3 credits 
Prerequisites: BCH 4035 and (PCB 4023 or PCB 4522) 
Explores the molecular basis of selected viral pathogens, genetic diseases and cancer through lectures and presentations by faculty in the College of Science and Biomedical Science, Scripps Florida and private industry representatives. Discusses novel technologies aimed at developing therapeutics together with the activity of modern biotechnology in drug development. 

Host Defense and Inflammation (MCB 6208) 3 credits 
Prerequisite: PCB 4233 or equivalent with a minimum grade of "B-" 
Course covers the immunology emphasizing mechanisms of host defense and inflammation in chronic inflammatory diseases. Mechanisms emphasized are roles of macrophages that are heterogeneous and diverse populations regulating host defense and inflammation. Mycobacterial infections and allergic asthma are presented as disease models of chronic inflammatory diseases. 

Advanced Cell Physiology (PCB 6207) 3 credits 
Prerequisite: Permission of instructor 
Course describes in-depth membrane physiology, intracellular signaling pathways, and cellular function, with an emphasis on neurons and human muscle cells (skeletal, smooth, and cardiac muscle cells). 

Molecular Basis of Human Cancer (PCB 6235) 3 credits 
Prerequisites: Graduate standing and PCB 4023 or BCH 3033 or PCB 6207 with minimum grade of "B-" 
Course covers current concepts and knowledge of cancer, exploring the molecular and cellular mechanisms underlying cancer progression with an aim to understand the processes of tumorigenesis. 

Problem-Based Immunology (PCB 6238) 3 credits 
Prerequisites: Graduate standing and PCB 4233 or equivalent with a minimum grade of "B-" 
Course provides an up-to-date understanding of the basic science of immunology and how that science applies to the realities of patient care. The fundamental mechanisms of immunity are illustrated by cases of genetic defects in the immune system, immune complex diseases, immune mediated hypersensitivity reactions and autoimmune and alloimmune diseases. 

Tumor Immunology (PCB 6239) 3 credits 
Prerequisites: Graduate standing and PCB 4233 or equivalent with a minimum grade of "B-" 
Explores the role of the immune system in cancer and the implications for the host. The effect of the tumor-host interactions on the developing neoplasm are studied by considering related topics, such as angiogenesis, MMPs, chemokines, and metastasis. Additionally, the course explores the role of the immune system in defense against the tumors and the mechanism by which cancer cells escape the surveillance system. 

RNA Biology and Diseases (PCB 6525) 3 credits 
Prerequisite: Permission of instructor 
Course provides advanced-level training in molecular biology of RNA. Topics covered include principles of RNA structure, function, and metabolism; methodologies for studying RNA; diseases related to RNA deficiencies; and applications of RNA technologies in research and clinical development. 

Molecular Biology of the Cardiovascular System and Cardiac Disease (PCB 6705) 3 credits 
Prerequisites: BCH 3034, PCB 4023, or permission of instructor 
Examination of the molecular biology of cellular function focused on tissue adaptation in cardiovascular disease. Investigation of survival responses to cellular stress in atherosclerosis, cardiac hypertrophy, myocardial ischemia and hypertension. 

Adult Neurogenesis (PCB 6848) 3 credits 
Prerequisites: Graduate standing and PSB 6037 or PSB 6345 or equivalent 
The background of stem cells and neuroscience is covered followed by several aspects of neurogenesis, including where neurogenesis happens in the brain, how it happens, why it happens, and, more importantly, how it might help the brain heal itself. 

Physiology of the Heart (PCB 6885) 3 credits 
Prerequisites: BCH 3034, PCB 4023, or permission of instructor 
Course emphasizes the relationship between the biochemical properties of the individual constituents of the heart cell (myocardium), the biophysics of cardiac muscle function, and the performance of the intact heart. The course format will involve lectures, journal club presentations, round table discussions, invited speakers as well as special projects 

Directed Independent Study (PCB 6905) 1-3 credits 
Prerequisite: Permission of instructor and department 
Independent research. 

Special Topics (PCB 6933) 1-8 credits 
Prerequisite: Permission of instructor 
Topics of interest to students in Biomedical Science, such as protein misfolding and disease, molecular biology laboratory techniques and clinical microbiology. 

Master's Thesis (PCB 6971) 1-12 credits 
Grading: S/U 

Thesis-Related Research (PCB 6974) 2-3 credits 
Prerequisite: Biomedical Science master's thesis students only 
This course is a vehicle allowing students to conduct research for their master's thesis prior to writing and defending their proposal. 

Developmental Neurobiology (PSB 6515) 3 credits 
Prerequisites: PSY 1012 and PSB 3002 
In-depth coverage of the principles and recent advances in the development of the brain and nervous system, including nerve cell migration, axon outgrowth, specificity, plasticity, neurotrophism, nerve cell death, and the influence of experience on the nervous system. 

Biology: Graduate Courses


Advanced Immunology (PCB 6236) 3 credits 
Prerequisite: PCB 4233 
A study of the chemical and biological natures of antigens and antibodies: their preparation and reactions in vivo and in vitro, their applications in basic science and therapy, and the immunochemical and experimental methods involved with tagged or free immunologic products. It is a lecture course. 

Bioinformatics (BSC 6458C) 4 credits 
Prerequisite: Permission of instructor 
A practical approach to accessing nucleic/protein databases, management of databases, identification of genes, and electronic expression profiling. 


 

Psychology: Graduate Courses

Biological Vision (PSB 5117) 3 credits 
Visual perception is studied through its basis in retinal and cortical neurophysiology, with emphasis on the Fourier domain in early processing and co-operative neural interactions in pattern formation. 

Principles of Neuroscience (PSB 6037) 3 credits 
A survey of principles of neuroscience as they relate to behavior. Topics include morphology and connectivity of neural cells, biological potentials, gross structure of the central and peripheral nervous system, and sensory, motor, and higher-order integrative functions. 

Neuroscience 1 (PSB 6345) 3 credits 
A course of in-depth coverage of the principles of neural science, including functional neuroanatomy, sensory processes, higher brain function, and development of the nervous system. 

Neuroscience 2 (PSB 6346) 3 credits 
A course of in-depth coverage of the principles of neural science, including functional neuroanatomy, sensory processes, higher brain function, and development of the nervous system. 


 

Complex Systems: Graduate Courses

Cognitive Neuroscience (ISC 5465) 3 credits 
An interdisciplinary survey of the neural basis of cognitive functions such as perception, attention, memory, and language. 



Last Modified 2/13/17